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ABSTRACT
Serverless computing has gained attention due to its fine-grained
provisioning, large-scale multi-tenancy, and on-demand scaling.
However, it also forces applications to externalize state in remote
storage, adding substantial overheads. To fix this “data shipping
problem” we built Shredder, a low-latency multi-tenant cloud store
that allows small units of computation to be performed directly
within storage nodes. Storage tenants provide Shredderwith JavaScript
functions (or WebAssembly programs), which can interact directly
with data without moving them over the network.

The key challenge in Shredder is safely isolating thousands of
tenant storage functions while minimizing data interaction costs.
Shredder uses a unique approach where its data store and network-
ing paths are implemented in native code to ensure performance,
while isolated tenant functions interact with data using a V8-specific
intermediate representation that avoids expensive cross-protection-
domain calls and data copying. As a result, Shredder can execute
4 million remotely-invoked tenant functions per second spread over
thousands of tenants with median and 99th-percentile response la-
tencies of less than 50 µs and 500 µs, respectively. Our evaluation
shows that Shredder achieves a 14% to 78% speedup against conven-
tional remote storage when fetching items with just one to three
data dependencies between them. We also demonstrate Shredder’s
effectiveness in accelerating data-intensive applications, including
a k-hop query on social graphs that shows orders of magnitude
gain.
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1 INTRODUCTION
Recent trends in cloud applications are improving resource uti-
lization at the expense of efficiency; today, there is a growing gap
between cloud applications and their data. This has gap has been
widened by serverless computing, which cloud providers and their
customers are increasingly embracing. Customers provide short
functions to a cloud provider, who takes care of invoking and scal-
ing instances in response to customer events. Serverless comput-
ing enables fine-grained resource provisioning, high-density multi-
tenant resource sharing, and on-demand scalability through new
lightweight isolation techniques [13, 15, 25]. This benefits cloud
providers by driving up utilization, and it benefits customers by
better fitting costs to resource use.

A key challenge, though, is that serverless functions are state-
less. Cloud providers count on this to ease provisioning and fault-
tolerance. Realistic applications need access to data and state; this
limitation forces functions to access all data remotely, and it forces
them to externalize all state into remote cloud storage in order to
preserve it across calls or to pass state to another function. Today,
this is done with traditional cloud storage systems [11, 12, 14, 40],
forcing serverless into a scheme that “ships data to code” [26]. This
results in inefficiency in moving data over the network to and from
low-throughput, high-latency stores. Moreover, traditional cloud
storage systems cannot offer the same level of fine-grain resource
accounting and on-demand scalability, thus compromise the bene-
fits of the serverless model.

Others have recognized this and have augmented serverless
architectures with fast “ephemeral” stores designed to hold state be-
tween different functions in chains of serverless functions [32, 47].
Fast ephemeral storage helps, but it doesn’t address the funda-
mental problem of data shipping, and it doesn’t help applications
that want to efficiently compute on durable data at its location
of record. Some databases are automatically scaled and have fine-
grained accounting [56], but they often only provide limited data
access models; customers cannot run arbitrary functions on their
data. For example, SQL works for many applications, but it is a
poor fit for many emerging applications. In particular, applications
with deeper data dependencies like those with graph data mod-
els and applications like inference serving that require short, but
computationally-intensive functions aren’t practical with SQL.

Instead, we argue serverless represents a new opportunity not
just for compute but also for storage. The solution to this inef-
ficiency is to reverse the flow of data to compute by exploiting
the natural portability of compute inherit in the serverless design.
In this paper, we demonstrate this reversal with Shredder, a new
cloud store designed for serverless function chains. In Shredder,
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customers embed small storage functions within the store, allowing
them to operate directly on their data.

Embedding computation within storage creates several chal-
lenges, so Shredder has the following key goals:
• Programmability: Tenants should be able to embed arbitrary
functions within storage with seamless access to their data.
• Isolation: Both the code and storage of different tenants should
be isolated from each other to ensure security and data integrity.
• HighDensity and Granularity: Shredder should support thou-
sands of tenant functions with fine-grained resource tracking to
maximize resource utilization.
• Performance: Shredder should make as much of the raw per-
formance of a storage server available to applications as possible.
Shredder’s isolation is provided by V8 runtime with a novel

design where tenants’ data is bound into their runtime avoiding
runtime boundary crossing costs. To meet its performance goals,
Shredder uses kernel-bypass networking and a user-level TCP stack,
and tenants directly route function invocations requests to par-
ticular storage server cores in order to avoid centralized request
dispatching bottlenecks. Combined with its unique approach to
avoiding data-interaction overheads, a single Shredder server can
process more than 4million function invocation requests per second
with less than 50 µs response times. We also demonstrate Shredder’s
effectiveness in accelerating data-intensive applications, including
a k-hop query on social graphs that shows orders of magnitude of
performance gain.

To summarize, this paper makes the following contributions:
• We identify the gap between serverless computing and state
storage; we propose storage functions to address this gap; and
we demonstrate the promise of the approach through Shredder’s
design and implementation.
• We show how storage functions eliminate the network gap be-
tween applications and data, and we propose a novel technique
that relies on an V8 intermediate representation (CSA) to avoid
runtime boundary crossing costs, closing the gap further.
• We show how embedding compute within storage fits together
with modern, high-performance networking goals; specifically,
we show it helps support techniques like kernel-bypass with
zero-copy data movement and scalable request dispatching.
• Finally, we conduct a comprehensive evaluation showing Shred-
der’s benefits and cost. In addition, we show how much accelera-
tion Shredder can provide for data-intensive applications.
The rest of the paper organized as the following: §2 describes

the overall design of Shredder and its trust model. Then, we de-
scribe Shredder’s implementation details, including its novel system
techniques Shredder adopted in §3. In S4, we dissect the costs and
benefits of Shredder. Furthermore, we show how much Shredder
is able to accelerate data-intensive applications. Finally, we cover
related work in §5 and conclude in §6.

2 SHREDDER DESIGN
Internally, Shredder consists of three layers: a networking layer, a
storage layer, and a function layer (Figure 1). Each CPU core runs all
three layers, but CPU cores follow a shared-nothing design; the state
of these layers is partitioned across CPU cores to avoid contention

Figure 1: Shredder storage functions add functionality to the
storage data model, can safely use low-level hardware, and
are isolated with inexpensive language-level guarantees.

and synchronization overheads. The storage layer hosts all tenants’
data in memory and has a get()/put() key-value interface. The
network layer handles network connections, protocol processing,
and the requests of all tenants. For each incoming request it calls
through to the storage layer if the request is a simple get() or put()
operation. If a request specifies a particular storage function, then
the network layer calls through to the function layer. Finally, the
function layer matches incoming requests to their storage function
code and context (that is, the environment and state associated
with that storage function), and it executes the operation within a
per-core instance of the V8 runtime. Each V8 runtime has a set of
embedded trusted access methods to avoid expensive calls between
the function runtime and the storage layer.

The reason for this three layer design is rooted in Shredder’s
goal of efficient but fine-grained resource sharing. First, each of the
layers can map any resources (compute, networking, storage) to
any tenant at any granularity. For example, the storage layer makes
it so that storage resources need not be mapped in and out of V8
runtimes, which would be costly. Similarly, a single V8 instance can
only host a single thread at a time, so binding data to a particular
runtime also fixes the amount of computation that can be done on
that data. By separating storage from functions, Shredder avoids
this coupling. Shredder must also be able to fluidly map network re-
sources across tenants. One option for maintaining the performance
of kernel-bypass while managing thousands of tenants would be to
give each tenant its own hardware-virtualized access to the network
card. However, even data center network interface cards typically
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only support about 100 virtual functions and cannot scale to thou-
sands of tenants on a single machine [1]. Beyond that, Shredder’s
networking stack needs a global view across tenant requests to
ensure fairness and flow control. Shredder’s separated network
layer takes care multiplexing these resources, which simplifies its
function layer and improves scalability.

2.1 Storage Layer
Shredder’s storage layer consists of a single in-memory record
heap upon which all tenants’ records are allocated. Different ten-
ants’ records are intermixed at arbitrary granularities. Having no
spatial-segregation eliminates any internal fragmentation between
tenants’ storage [48]. Storage isolation is enforced by segregating
hash tables; the store keeps a hash table for each tenant that maps
keys for its records to data. To ensure performance, the storage
layer is implemented in native code and exposes get() and put()
functions.

2.2 Storage Function Layer
The function layer keeps an independent instance of the V8 runtime
per-core. This lets tenants install and run storage functions while
providing lightweight isolation. Specifically, tenants provide their
own storage functions in JavaScript (or compiled to WebAssem-
bly [58]), and each function is bound to a per-tenant context in
which it can be invoked. The V8 runtime’s just-in-time (JIT) com-
piler translates functions into efficient code, and it also acts as a
sandbox, preventing one tenant’s code from manipulating stored
data belonging to another tenant. V8 is lightweight enough that
it can easily support thousands of concurrent tenants. Entry/exit
in/out of V8 contexts is less expensive than hardware-based iso-
lation mechanisms, keeping request processing latency low and
throughput high. When the network layer receives a request to run
a storage function, the function’s context is reused and re-entered,
which avoids any overhead in creation the function’s environment
and allows functions to keep volatile state across calls.

Separating storage from functions does come at a cost. Functions
are expected to interact intensively with data, so crossing in and
out of the runtime can add significant overhead (196 ns per call)
and can limit optimizations like inlining of storage access by the
JIT compiler. As a result, each tenant context contains logic from
the storage layer in an intermediate V8 representation (the CSA IR,
§3.3). The storage layer retains ownership of the physical resources
that make up the records and indexes, but CSA code within the run-
time is given read-only access to these structures from within V8.
The CSA version of get() implements the same hashing algorithm
as the C++ hashing function for hash tables in the storage layer, so
that it directly looks up values in the hash tables. From the storage
function perspective, the store still supports the same get() and
put() storage interface. Using code generated from the IR, tenants
can efficiently traverse the structures without execution ever leav-
ing the V8 runtime. For some data-intensive operations that access
or aggregate over many records Shredder’s unique trusted CSA
functions can accelerate operations by more than 3× (§4.3).

Overall, these storage functions enable “shipping code to data,”
letting applications run selected functions directly on data and un-
doing the forced separation of compute and storage. Data-intensive

application logic can be implemented in JavaScript to avoid net-
work roundtrips and request processing overheads. With a precise
view of function execution time, stores can precisely account for
the compute and memory resources each function invocation con-
sumes.

2.3 Network Layer
The network layer handles incoming packets, user-level network
protocol processing (TCP), RPC request framing, user-level task
scheduling, and request dispatch. It uses kernel-bypass networking
and each CPU core in Shredder polls for incoming network packets.
This avoids the overheads of the Linux kernel networking stack,
system calls, interrupts, and scheduler interactions, and it gives
Shredder high-throughput, low-latency, and fine-grained control
over request routing and scheduling.

In particular, the network layer works together with tenants to
spread load over cores to avoid centralized bottlenecks and spread
load. Tenant network flows are routed to specific cores directly by
the network card [27]. This also helps Shredder exploit per-tenant
locality.

2.4 Trust Model
Store operators and tenants are the key agents that interact with
Shredder. Tenants do not share state and cannot communicate
through Shredder; its only goal is tenant isolation. Tenants should
not be able to access each others’ state, and tenants should not
be able to access store state without going through its storage-
function-facing interface.

Tenants provide functions to the store, and they can invoke those
functions. Every tenant’s code is run in a separate V8 Context that
is associated with that tenant, and storage function code interacts
with the store through the same get() and put() interface that
remote tenant operations use. So, the interface itself provides no
new avenues for attack by tenants. Each Context is bound to the
tenant that installed it, and the store never allows operations on
records associated with a tenant id that differs from the Context
operating on it. The store only returns views of records to a tenant
that were put there by that tenant. Bounds checking on those views
ensures tenants cannot see each others’ data. Isolated V8 code
cannot manipulate these views or otherwise forge and manipulate
references.

Shredder’s Trusted Computing Base (TCB) includes the OS ker-
nel, libraries (including DPDK [4] for kernel-bypass), and hardware
(CPU, network card) on top of which it runs; these are not directly
exposed to users, but vulnerabilities in them can still lead to poten-
tial exploits. Shredder’s safety critically depends on V8’s isolation
of untrusted code, which is not proven and does see a few reported
vulnerabilities per year.

Recent speculative execution attacks [33] that leak data through
microarchitectural side channels complicate confidentiality for
Shredder. Both hardware manufacturers and runtime developers
have worked to mitigate these attacks, but some of them are no-
toriously difficult to mitigate without significant performance im-
pacts [7]. Furthermore, the discovery of these types of attacks has
persisted [38, 41, 54, 55, 59]. V8 mitigates speculative bounds-check-
bypass and protects against branch target poisoning [53], though
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Two-way
Context Context

Mechanism Creation Switch

Processes/C++ 763 µs 2,242 ns
v8::Context/WASM 889 µs 110 ns

Table 1: Isolation context creation and context switch cost
for OS, hardware-based isolation versus V8. Context switch
time includes the time to transfer control into an isolated
no-op procedure and back to trusted code. (See Section 4 for
hardware setup.)

other attacks like speculative store bypass don’t have inexpensive
software fixes and one must rely on hardware mitigations [2, 7] to
avoid severe performance penalties. Even with mitigations, Shred-
der’s approach has confidentiality risks if tenants are fully and
mutually distrusting since future attacks are likely to emerge.

3 IMPLEMENTATION
Shredder is built on Seastar [49], a runtime that combines kernel-
bypass through Intel’s DPDK [4] with a lightweight event-driven,
asynchronous programming framework built around a shared-
nothing philosophy, making it easy to scale across cores. Network
connections are sharded by the network card, so that each core
exclusively handles a subset of tenant connections; we augment
this dispatching strategy with a tenant-aware partitioning rather
than just random, flow-based load distribution. Communications
between cores happen through message passing.

Each core in Shredder runs with a single kernel thread pinned
to it to avoid context switch overhead and scheduler interference.
Each core executes a loop that is part of the networking layer. This
loop polls incoming packet receive queues; performs TCP trans-
port processing; and dispatches requests to handler fibers (fibers in
Shredder is stackless). Storage function requests are dispatched to
V8 fibers that invoke the local V8 isolate to run the requested func-
tion. In the scope of this paper, storage functions are implemented
in JavaScript. Requests access records indexed by unordered hash-
based tables that are stored in the underlying key value store in
an in-memory shared record heap (Figure 1). Functions can emit
data to incorporate it in the response message for the request. The
result is returned to the event dispatching fiber which returns the
result to the tenant over the network.

We describe the details of each of the key aspects of Shredder’s
design in the remainder of the section.

3.1 Isolation and Context Management
Cloud databases commonly host thousands of tenants per instance [56],
so Shredder’s isolation costs must be minimal. Shredder must en-
force isolation in both for record storage and for tenant-provided
code. Tenants can only fetch records through the hash table that
indexes the records they stored themself; furthermore, the code
they provide is memory-safe, so they cannot access records that
they did not create.

Shredder relies on V8’s Contexts [3] (Figure 2) to isolate tenant-
provided code. Each Context is an isolated execution environment

Figure 2: Tenant Isolation in Shredder. Tenant’s requests are
steered to specific cores by the NIC hardware. Each tenant
keeps a Context that isolates its state and code from other
tenants’. A per core V8 Isolate processes each incoming
request one-at-a-time within the Isolate. Tenant-provided
code can manipulate records by making calls from within
the executing Context into a native-code interface provided
by the storage; §3.3 discusses how Shredder optimizes away
these cross boundary calls in most cases.

Native

JavaScript

Overhead: JS enter+exit 196 ns JS to Native call+ret 31 ns

en
te
r call re
t call re
t exit

Figure 3: Boundary Crossing Costs.

that allows independent code to run in the same V8 runtime in-
stance. An independent V8 instance (an Isolate) is allocated for
each core. Each Isolate runs code from different tenant Contexts
one-at-a-time; the contexts enforce inter-tenant isolation of code.
After initial creation within a specific Isolate, a Context can be
entered and exited repeatedly. We measured the cost to transfer
control into the V8 runtime and then back to the native store code
at 196 ns and the cost for JavaScript functions to transfer control to
native storage code and then back to JavaScript at 31 ns (Figure 3),
making it more than an order of magnitude faster than process
context switch (Table 1). Table 1 also shows that the bare cost of
a two-way switch into and then out of a V8 Context in C++ code
without calling a JavaScript function within the Context is 110 ns.
Overall, these fast enter/exit times keeps Shredder’s throughput
high, and Section 3.3 shows how the cost of calling native code
from a JavaScript function can be avoided altogether during data
access, limiting this overhead to the initial procedure invocation
and response.

3.2 Zero-copy Data Access
Each storage function invocation runs within a V8 context, which
receives data in the request receive buffers as arguments. Each
invocation can output values that they compute or values from the
store into response transmit buffers.
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1 function k_hop(id, k) {

2 // Get "id"; cast as uint32 array.

3 var friends = new Uint32Array(get(id));

4 var sum = friends.length;

5

6 // Argument "k" is the number of hops

7 if (k == 0)

8 return sum;

9

10 for (var i = 0; i < l; i++) {

11 // Recurse

12 sum = sum + k_hop(friends[i], k-1);

13 }

14 return sum;

15 }

Listing 1: k-hop query on the social graph.

All key-value pairs stored in Shredder are stored outside of V8
contexts, and they are intermixed within the storage heap. Storage
functions use get() and put() calls to access these records. In the
future, we expect to support range operations over ordered indexes
as well, but the current version only supports point lookups via
unordered hash indexes.

Local get() and put() operations are optimized to avoid copy-
ing records into and out of storage whenever possible. That is,
function logic can operate over records in-situ with no copying.
This is a powerful optimization exclusive to storage functions, al-
lowing operations on large numbers of records with minimal over-
head. Whereas operating over records through remote get() put()
requires moving every record over the network.

Shredder makes this work through in-Context ArrayBuffers.
ArrayBuffers allow the Shredder store to safely pass bounded
views ofmemory into V8 Contextswith no copying. Since ArrayBuffer
works as a bounded buffer over generic binary data, code within
a Context can read arbitrary data from the buffer. V8’s DataView
allows code to give semantics to the underlying data; for example,
operating over portions of it as an unsigned integer or as a floating
point value.

ArrayBufferworks in the other direction as well. When isolated
code creates a new ArrayBuffer, the underlying memory are allo-
cated through ArrayBuffer::Allocator, which can be specified
to use malloc() to directly allocate memory from the Shredder
store’s heap. ArrayBuffer provides an Externalize() function to
transfer ownership of memory to the store, which prevents garbage
collection by V8 while the store holds a view to the underlying
data. Overall, ArrayBuffer provides an efficient way to transfer
references to chunks of data between isolated V8 Contexts and the
Shredder store. Keys and values in Shredder are stored as opaque
binary blobs, so ArrayBuffers are used with them pervasively.

Listing 1 shows an example that implements a k-hop operation
that finds the transitive closure of a set of friends rooted at a single
user profile in a social graph up to some depth k . The store maps
user ids to friend lists, which holds variable length arrays containing
user ids (Figure 4). Then, the function fetches the specified user’s
friend list, and it iterates over the list and recurses. The get()
operation in the function only binds an ArrayBuffer avoiding data

ID1 ID2 ID3 ID5 ID9

ID2 ID3 ID7 ID8

ID3 ID5

ID8 ID3 ID6

Figure 4: Structure of the social graph data.

Figure 5: Exitless get() Operations via CSA. get() is im-
plemented entirely within in tenant Contexts, so no cross-
domain calls are needed to fetch views of records within
tenant-provided functions. 1. Functions take as input a
global ArrayBuffer “table” which points to the tenant’s
hashtable, and provides another empty ArrayBuffer “buffer”
which is used to point to the result value. 2. Internally the
get()CSA computes a key hash and indexes into the tenant-
specific hash table which “table” points to. 3. get() rebinds
the tenant-provided ArrayBuffer “buffer” to point to the re-
quested record.

movement within the store as friend lists are traversed. The code
only uses simple get() operations, but workloads like this are
common enough that Facebook implements a customized social
graph store for similar queries [18]. Here, Shredder saves round
trips and data movement without the need for a specialized store.

3.3 Eliminating Boundary Crossings with CSA
For some operations that work with a few larger chunks of data (a
few tens of kilobytes), Shredder’s simple zero-copy get()/put()
interface is efficient. However, some data-intensive operations suf-
fer when control must be continuously transferred back and forth
between a Context and trusted store code. The control transfers
are implemented via procedure call, and, by our measurements,
simple calls from JavaScript to native code only suffer 31 ns (Fig-
ure 3) of overhead per call. These costs add up and they prevent
optimization and inlining by V8. For functions that work with lots
of fine-grained records, the impact is significant. For example, these
costs can slow down iteration over large record sets as much as 3×
in some simple cases we encountered.

To solve this, Shredder completely eliminates control transfer be-
tween tenant-provided code and the store for simple read-access to
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records using a unique form of data structure co-design where un-
trusted tenant code can directly access parts of the store’s metadata
and indexes. Figure 5 shows how this works. Rather than calling
into a native code procedure provided by the store to perform the
lookup of a value, get() operations are implemented within V8
Contexts themselves. The store binds the bucket array of a tenant’s
hash index into its Context. As a result, the tenant can traverse the
hash index itself to find values, saving the trust boundary crossing
and eliminating the call overhead.

Shredder achieves this by implementing these in-Context store
operations with V8’s CodeStubAssembler (CSA) [9]. CSA is a low-
level intermediate representation built on top of V8’s TurboFan
code generation architecture [10]. CSA is portable across hardware
architectures, and it can be translated into highly efficient machine
code. Both the V8 Ignition interpreter [5] and TurboFan optimiza-
tion compiler leverage CSA to achieve portability, efficiency and
interoperability. V8 developers also use CSA to improve Context
builtins – for example, the typical base functions that are part of
every JavaScript context. So, many of the functions defined in the
ECMAScript specification are written in CSA. Historically some
builtins were written in C++, while performance critical builtins
were hand written in assembly for each hardware platform to elimi-
nate expensive V8-to-C++ calls. The hand written assembly wasn’t
portable and was hard to maintain, so many builtins are now ported
to CSA to avoid such problems. CSA is low-level but it can perform
many simple data manipulation operations efficiently. For example,
CSA code can load data from a specified address, and it can modify
the internal data of JavaScript objects.

The Shredder CSA-based get() operation uses an existing out-
put ArrayBuffer provided by the tenant procedure running within
its Context; it is populated with the output value upon return.
Shredder’s get() takes an input key, computes its hash, indexes
into the bucket array, and compares the key at the allocation pointed
to by the bucket array. If the key matches, the output ArrayBuffer
is bound to cover the return value, so the procedure gets a view
of the data with no intervening copy. Tenants can’t force arbitrary
memory accesses through get(), because get() closes over the
hash table ArrayBuffer. Tenants can only get access to the hash
index through get(), which can only happen when the tenant’s
Context is executing the supplied get() CSA code. Tenants cannot
overwrite or manipulate the CSA code, since V8 doesn’t allow code
to construct or manipulate pointers.

Finally, object creation and garbage collection is known to be
costly in V8. Shredder must avoid these overheads on the fast
path, which would otherwise erase the gains from its optimiza-
tions. Shredder’s interface makes this easy by allowing objects
like ArrayBuffers to be recycled. For example, when iterating over
large sets of records, function code can create a single ArrayBuffer
and pass it to each get(). Shredder’s CSA-based get() simply retar-
gets the ArrayBuffer to the new value, avoiding object allocation,
deallocation, creation, or destruction costs.

4 EVALUATION
In our evaluation setup, we use three Emulab D430 machines (see
Table 2 for full specifications). One machine runs the Shredder
server; two others run a client. Both the clients and the server use a

CPU 2×Xeon E5-2630v3 2.40 GHz

RAM 64 GB 2133 MT/s DDR4

NIC Intel X710 10GbE PCI-Express

OS Ubuntu 14.04, Linux 4.4.0-116,
DPDK 17.02.0, 16×1 GB Hugepages

Table 2: Experimental configuration. The evaluation was
carried out on a three node cluster consisting of two clients
and one storage server onCloudLab. Each node has twoCPU
sockets and 16 physical cores.

user-level TCP stack with kernel-bypass networking. One client ma-
chine simulates load offered by 1,024 tenants, each making requests
at the same rate. Each simulated tenant runs in a closed-loop load,
and server load is varied by varying the delay between requests
and the number of requests that each tenant keeps pipelined to
the server at a time. Each of the 1,024 tenants accesses its own set
of 250,000 128 byte records, so the server stores about 32 GB of
data in total. Tenants access keys according to YCSB-C’s default
skewed Zipfian distribution with θ = 0.99. The second client ma-
chine probes median and 99th-percentile response latency of the
server with simple, back-to-back get() operations that fetch a sin-
gle value while the background load runs. This makes the plotted
response latencies independent of any response time variance in
the workloads that we test with, which can vary widely.

The Shredder server runs on 16 cores each servicing a disjoint set
of tenants. Tenants are mapped randomly (but statically) to different
cores directly by steering requests from a particular tenant’s TCP
connections to a specific DPDK receive queue that is paired with a
single storage server core.

Shredder adds no extra expressivity to what tenants can compute
over their data client-side, so its value comes when it can improve
server throughput or reduce tenant-visible delays. Our evaluation
explores Shredder’s overheads compared to simple get() and put()
operations and where those costs stem from. This calibrates how
much work Shredder’s programmability needs to make up for in
order to improve efficiency relative to a typical key-value store. Fi-
nally, we explore applications ranging from select-project-join with
simple aggregations, to simple graph analytics, and machine learn-
ing classifiers that show the end-to-end gains Shredder achieves
along with where the approach breaks down.

Our evaluation focuses on four questions:
1. Does Shredder preserve low-latency operation? Our results
show a Shredder store responds to 4 million storage-function in-
vocations per second in 50 µs with tail latencies around 500 µs–
several times faster than conventional multi-tenant stores.
2. Does Shredder scale across cores to achieve good through-
put and server-side efficiency? Our results show Shredder’s iso-
lation increases server-side overhead, but Shredder still scales with
the number of server cores when tenants can be divided among
cores.
3. Can Shredder support thousands of isolated tenants? Our



Narrowing the Gap Between Serverless and its State with Storage Functions SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

(a) Latency vs. throughput (b) CPU Scalability (c) Tenant Scalability

Figure 6: Comparison of get() performance with and without using storage functions.

1 Core 8 Cores 16 Cores

Shredder 479 ns 853 ns 1567 ns

No Isolation 52 ns 58 ns 73 ns

Table 3: Time spent performing a single get() request (ex-
cluding networking and dispatching time).

results show very small impact on throughput when running with
more than 1,000 tenants.
4. Does Shredder’s use of CSA improve the performance of
data-intensive operations? Our results show that CSA can in-
crease server throughput by about 3.5× with some data-intensive
applications. The following subsections detail these results.

4.1 Overheads and Costs
Invoking operations through V8 adds overhead. To understand
V8’s costs we created a storage function that calls get() on the
store and returns a 128 byte value. In one configuration (labeled
No Isolation), the get() operation is serviced directly by the
storage server, skipping the function layer altogether. In another
configuration (labeled Shredder w/o CSA), this storage function
is invoked, and the function calls get() on the storage layer, trans-
ferring control flow from V8 to the storage layer and back to fetch
the value. In the final configuration (labeled Shredder), the storage
function is invoked, and it performs the get()without transferring
control flow to the storage layer; instead, the operation is executed
entirely within the V8 runtime using trusted code generated using
CSA. In practice, this storage function represents an unrealistic case
for Shredder; tenants that need a single value from the store can
remotely invoke get() without using a storage function to avoid
overhead; however, it is useful for demonstrating the upper bound
on costs of the approach relative to a standard key-value store. In
the experiment, each tenant pipelines 8 requests at a time, pacing
operations to vary the load.
Cost of Isolation: Figure 6a shows both the median and 99th-
percentile response latency for each of the three configurations. In
all cases, once the offered load exceeds the limits of the store, re-
sponse time spikes as expected. Differences in the saturation points

show the relative CPU cost of each of the approaches. Shredder’s
target is around 50 µs access times with a hard bound on 99th-
percentile latency within 10× for get() operations, so we compare
the throughputs of the different approaches at 50 µs median latency
and 500 µs the 99th-percentile response latency. (In other experi-
ments we ignore the latency requirement and just show the optimal
throughput upper bound.) Native get() operations implemented
and directly executed by native code (in C++) achieve 7.5 Mop/s;
however, this approach is not CPU-bound in this case. Instead, the
network is saturated for the No Isolation case; Figure 8a shows
with smaller return value size native code can achieve 12.5 Mop/s.
Calling get() operations from V8 slows the store to about 4 Mop/s.
As a result, if each storage function invocation can perform just
four data-dependent get() operations per invocation it can offset
the slowdown due to V8’s isolation. Note that these numbers are
measured with Shredder running on 16 cores, later in CPU Scal-
ablity section we see that when Shredder is running on 16 cores the
V8 isolation cost is much higher than when Shredder is running
on 1 core due to poor V8 scalability. We believe that with some
engineering effort it’s possible to improve V8 scalability, then the
V8 isolation cost will be much cheaper than that we measured here.
CPU Scalability: To measure how the system scales, we measured
the throughput of these same three configurations in performing a
get() on different number of CPU cores (from 1 to 16 cores). At
16 cores, all of the physical cores of both NUMA sockets of the
machine are occupied.

Figure 6b shows the system can scale nearly linearly. The reason
that No Isolation shows lower than linear scalability at 16 cores is
because the 10 Gbps network bandwidth is nearly saturated. Later
experiments show that with smaller value sizes No Isolation
can achieve higher throughput. Shredder and Shredder w/o CSA
both show lower scalability; although we create independent V8
Isolates on each core, this may be in part due to the fact that there
is still some resource sharing in the V8 engine (e.g. background
code optimization and garbage collection tasks).

To better compare the scalability of Shredder and No Isolation
without the impact of network saturation, we ran another mi-
crobenchmark to measure the CPU time spent performing a single
get() request for Shredder and No Isolation. Table 3 shows the
results. For Shredder, the CPU time nearly doubled when scaling
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Figure 7: CPU Time Analysis

from 1 core to 8 cores and from 8 cores to 16 cores. Whereas for No
Isolation the CPU time increase is much less. For Shredder, each
request goes through the V8 engine, this confirms that the poor
scalability scalability of V8 is the root cause for Shredder’s low scal-
ability. It is likely that V8’s poor scalability can be improved, so we
don’t view this as a fundamental issue with Shredder’s approach.
Tenant Scalability: In this experimentwe run the server on 16 cores
while fixing the number of client connections at 1,024 and vary-
ing the number of tenants on the server. When less than 1,024
tenants are simulated, multiple client connections will share the
same tenant context. We run the same simple get() operations and
measure the throughput. Figure 6c shows the number of tenants
has almost no impact on No Isolation approach as expected. For
Shredder and Shredder w/o CSA tenant contexts are implemented
using V8::Context structures, and the V8 engine needs to switch
between different Contexts. The experiment shows that switching
between V8::Contexts adds a small overhead and the server scales
well to more than 1,000 tenants with about 6% performance decline.
CPU time analysis: This experiment analyzes the amount of CPU
time spent performing these get() requests for each of the three
configurations, and we run it on 1, 8 and 16 cores respectively to
show the impact of scaling to more cores.

Although server CPU is always running due to DPDK polling,
we don’t count polling toward the total since it effectively rep-
resents CPU idle time. Apart from total CPU busy time, we also
measure the time spent processing requests, which is measured
starting when a new request is received from the network stack
until the response is written to an output buffer. Other CPU busy
time, which is computed as the total CPU busy time minus CPU
time processing requests, is mainly time spent in the user-level
network stack receiving and sending data.

Figure 7 shows the results. The gap between the top of the bars
to the top of each subgraph is CPU idle time. The graph shows that
under the same load, the time spent on networking is almost the
same for the three approaches, and the differences of time spent
on processing requests shows the overhead of V8 isolation. There

are two kinds of V8 isolation overhead: the first is the overhead
of entering/exiting V8 to invoke an operation; the second is the
overhead of V8-contained code getting data from the storage layer.
Shredder eliminates the second overhead with CSA, so the gap
between Shredder and Shredder w/o CSA shows CSA’s benefit.
The graph also shows V8 overhead increases when Shredder scales
to more cores. On 1 core, requests processing accounts for 41% of
Shredder’s CPU busy time, which increases to 59% on 16 cores, due
to the increase of V8 overhead.

4.2 The Benefit
Minimizing data movement: In many cases pushing code to the
storage server can greatly reduce the data transferred over network.
To show this benefit we run a simple experiment in which clients
issue requests to get a projection of multiple values stored on the
server. Each stored value contains an array of 32-bit integers, and
the goal of each request is to get the first element in the array. With
Shredder the projection can be done on the server with a one-line
storage function (Listing 2), which gets the value from the storage
layer, projects the first 32-bit integer from the value, and returns
the result. Without Shredder clients need to get the whole value
from the server and then get the first integer from the value, which
results in more data transferred over the network. We vary the
size of the value and measure the throughput achieved by the 3
approaches.

The upper half of Figure 8a shows request processing through-
put. Shredder performance is independent of value size, since the
storage function returns one integer to the client and the amount
of data transferred over the network is constant. The performance
of Remote get/put drops for values of 128 bytes or more. The
bottom half of Figure 8a shows the amount of data transferred per
second over the network for the Remote get/put approach. For
value sizes of 128 B or more network bandwidth saturates, and
the server becomes bottlenecked. As a result, Shredder improves
performance when its storage functions can reduce the amount of
data transferred back to the client to less than 128 B.
Minimizing remote requests:Another benefit of pushing code to
storage is in reducing the number of remote requests a client has to
make to perform an operation, which result in fewer network round
trips and client stalls. To show this benefit we demonstrate a simple
application that traverses lists in the storage layer and returns the
value at the end of each traversal. Each node in each list is stored
as a single value in the storage layer; the key for the next node in
the list is stored at the head of the value as a 32-bit integer. With
Shredder the traversal can be implemented as a function shown as
Listing 3. Without Shredder the client has to iteratively read value
from the database to find the key of the next node.

The experiment varies the length of the list traversals. The up-
per half of Figure 8b shows the throughput each approach can
achieve for traversals of varied length. The performance of Remote
get/put drops greatly with longer traversals, because one network
round trip is needed for each node traversed. Hence, these extra re-
quests generate extra load, saturating the server and stalling clients
waiting for responses. With traversals that access two or more
nodes Shredder performs better than Remote get/put because
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(a) Projection throughput as value size varies. (b) Throughput for different gets per request. (c) List traversal without kernel bypass.

Figure 8: Performance with and without using storage functions for projection and data dependent accesses.

1 function projection(key) {

2 // Get value , cast , return first uint32.

3 return new Uint32Array(get(key))[0];

4 }

Listing 2: Projection function.

1 function list_traversal(key , length) {

2 // "key" arg indicates where to start.

3 // "length" arg indicates traversal depth.

4 for (var i = 0; i < length; i++) {

5 // Cast as uint32 array.

6 // First element indicates next node.

7 key = new Uint32Array(get(key))[0];

8 }

9 ...

10 }

Listing 3: List traversal as a tenant-provided procedure.

only one network round trip (or more than four nodes when ignor-
ing network bottlenecks). The bottom half of Figure 8b shows the
number of nodes traversed per second at the server. With longer
traversals Shredder can traverse manymore nodes per second, since
network request processing is amortized over more node accesses.
Shredder performs significantly better than Shredder w/o CSA in
this application, because this application accesses much more data
than the previous examples; eliminating data movement within the
store itself is key to good performance in this case.
Impact of Kernel Bypass: Figure 8c shows the result of running
the list traversal experiment without kernel bypass. Kernel by-
pass lowers network overhead, so configurations of each of the
approaches that depend more heavily on request-response are im-
pacted most by eliminating kernel bypass. For example, of the
three approaches shown, using traditional get() and put() opera-
tions suffers the most, since it needs to synchronously fetch every
value traversed from the store. This shows that Shredder’s storage
functions are even more effective if network overheads are high.
Without kernel bypass, CSA makes less of a difference than it does
with kernel bypass, unless each request interacts with many data
items.

4.3 Graph Application
To evaluate Shredder with a more realistic workload, we built a
graph application on the ego-Facebook dataset from the Stanford
Large Network Dataset Collection [35]. The dataset consists of
“circles” (or “friends lists”) from Facebook. In Shredder, the dataset
is stored as key value pairs where keys are IDs identifying a person
in the social graph and the value is an array of IDs representing
the friend list of that person (Figure 4). The graph has 4,039 nodes
and 88,234 edges in total.

The application performs k-hop queries for randomly generated
keys on the social graph. For example, for a one-hop query it gets
the friend list of a person, then it gets the friend list of each friend
and it sums up the length of the friend lists. Listing 1 shows the
implementation of k-hop query. For Remote get/put a remote
request is needed to get each friend list.

Figure 9a shows throughputs of the three approaches with dif-
ferent values of k . For one-hop queries we implement the Remote
get/put approach on the client side and measure the throughput.
For the other values of k , running Remote get/put is slow, so
we estimate its best base time by calculating the number of nodes
it needs to visit and dividing by best case throughput. The result
shows that Shredder is a great improvement over Shredder w/o
CSA and Remote get/put.

As k grows the number of visited social graph nodes (key-value
pairs) explodes. Figure 9b shows the number of key value pairs ac-
cessed per second. With CSA, Shredder can traverse nearly 740 mil-
lion key-value pairs per second — orders of magnitude (61×) more
than using a plain key-value store and nearly 3.5× as many as
without CSA.

Real-world workloads mix of different kinds of queries. One com-
mon combination is workloads where most queries can be served
by simple primary-key lookup get() requests with a small portion
of requests being more complicated queries. In fact, simple get()
requests can just be served without V8 isolation to leverage the low
cost of non-isolated get()s. Figure 9c compares the two approaches
under mixed workloads of simple get() and one-hop graph queries.
For the Shredder approach all requests including simple get()s are
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(a) Throughput of k -hop graph query. (b) Number of k/v pairs visited per second. (c) Simple get() and 1-hop graph query mixed.

Figure 9: Graph Application Evaluation.

served through functions. For the other approach (labeled “Com-
bined”) the simple get() requests are served directly by the data-
base without entering V8, and the one-hop graph queries are served
through the function in V8. Throughput of two approaches are
measured under varying percentage of simple get() requests. The
result shows that the combined approach improves the performance
significantly. The higher the percentage of simple get() requests
in the workload, the more benefits from the combined approach.

4.4 Neural Network Application
For AI and machine learning use cases, databases are often used to
serve trained models. Once trained, models must be deployed to
a prediction serving system to provide low-latency predictions at
scale. In many cases many models are needed to reflect different
feature representations, modeling assumptions, and machine learn-
ing frameworks. In addition, multiple models can be combined in
ensembles to boost prediction accuracy and provide more robust
predictions with confidence bounds [19]. Usually in an online pre-
diction serving system models are stored in a database. To make a
prediction, the corresponding model is fetched from the database.
Sometimes the input dataset is also stored in the same database.

Prediction systems can leverage Shredder to push prediction code
to the database that stores themodels, which can greatly reduce data
movement over the network, as models can be very large in size.
But there’s also a downside of this approach, because prediction
code are compute intensive, on Shredder prediction functions must
be implemented in JavaScript or WebAssembly, both are slower
than C++ native code[29]. It is a question if the benefits of Shredder
can outweigh the downside for such applications.

To answer the question, we built an prediction service on Shred-
der. We trained fully connected neural networks with one hidden
layer on the Iris dataset and Wine dataset from the UC Irvine Ma-
chine Learning Repository [20] and load the resulting models in
Shredder. Neurons are represented as arrays of 32-bit float numbers,
and the neural network is stored as one big value of neurons con-
catenated sequentially. For the Iris dataset, which has four features,
the trained neural network has two neurons in its hidden layer to
achieve optimal accuracy and three output neurons; the total size
of the neural network is 76 bytes. The trained neural network for
the Wine dataset, which has 13 features, has five neurons in its

Figure 10: Throughput of neural network predictions

hidden layer and the total size of the network is 352 bytes. The in-
puts for the predictions are also stored in the database. The storage
function get()s the model and an input vector from the store and
then makes an inference. The Remote get/put approach fetches
the neural network and the input and computes the inference at
the client.

Figure 10 shows the throughput of Shredder and Remote get/put
approach for the two datasets. With small models of 76 B, Remote
get/put approach achieves higher throughput than Shredder. This
actually shows the case in which the benefits of Shredder cannot
overweigh the disadvantage. When requests are CPU-bound and
data transfer over the network is small, the Remote get/put ap-
proach achieves better performance, because inference is computed
in C++ code at client, whereas on Shredder inference is imple-
mented as JavaScript storage function which is less efficient than
C++ code. For the Wine dataset, which has larger models, Shredder
outperforms Remote get/put, since Remote get/put becomes
bottlenecked by the network bandwidth. The result shows that
Shredder can still show benefits even in cases of CPU-bound re-
quests if Remote get/put entails a large amount of data transfer
over the network. In real world applications most models are much
larger than these, so Shredder has potential to provide benefit over
traditional Remote get/put approach without requiring a special-
ized model-serving service or customization at the storage layer.
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5 RELATEDWORK
Shredder’s core dispatch is similar to many other recent kernel-
bypass-based in-memory stores [21, 22, 31, 36, 37, 45] except that its
set of operations are runtime extensible. These fast stores perform
millions of operations per second per machine with a few microsec-
onds response time, which led to Shredder’s different approach
to code isolation that eschews conventional hardware-based pro-
tection mechanisms. This leads to another place where Shredder
differs from past systems: in request heterogenity. Most kernel-
bypass-based stores service small, simple requests, but Shredder
operations can be general-purpose code. Some recent work has
started to tackle the scheduling issues this creates [30, 44, 46], but,
in Shredder, tenant-code must be cooperative in order for it to
maintain fairness and good response times.

RDMA is another way to make storage more efficient, since it
eliminates CPU overhead at the receiver. But, RDMA operations
cannot have application-specific semantics, so they are inefficient in
practice: tenants would still have to perform the same computation
on the data that they receive that a server could have. Shredder
still uses efficient kernel bypass networking, but avoids (so called,
one-sided) RDMA for this reason.

Using V8 to isolate code in a store or database isn’t a new
idea. NodeJS [43] is a general process container for running arbi-
trary JavaScript or WebAssembly code. MongoDB [42] popularized
JavaScript within databases, and multi-tenant versions inspired by
it are operated by major cloud infrastructure providers [16]. Shred-
der really differs primarily in its focus on performance, which forces
some aggressive design decisions. In particular, Shredder’s focus on
kernel-bypass networking with dense multi-tenancy emphasizes
all overheads; this leads to its unique approach centered on storage
structure co-design, which allows operation over structures fully
within tenant-provided code.

Comet [24] is an decentralized hash table that allows applica-
tions to extend its functionality using Lua sandboxed extensions.
Similarly, Splinter [34] is a Rust-extensible in-memory key-value
store. Like Shredder, extensions in these systems also interact with
the store through its get/put interface. Shredder storage functions
are language-agnostic since they can be supplied as WebAssembly,
and Comet is missing Shredder’s emphasis on performance. Neither
Comet nor Splinter eliminates the boundary between functions the
data they operate on.

Finally, software-fault isolation (SFI) [28, 50, 52] has long sought
to create low cost control transfer schemes [6, 17, 23, 39, 60] to con-
tain untrusted computation within a process. Many schemes have
explored approaches to avoid copying data across these trust bound-
aries, but this generally involves increasing trust in the isolated
code (for example, only restricting write access to some state). Post-
gres supports database extensions [8], and hardware isolation [51]
and SFI [57] have both been applied to it, though at very different
time scales and performance.

6 CONCLUSION
Today’s cloud storage systems avoid coupling compute and storage
to ease scaling and fault-tolerance and to drive high-utilization.
However, as compute grows more granular, applications are in-
creasingly impaired by this gap between computation and data.

Shredder takes a step toward resolving that gap: while applica-
tions can use it as a normal key-value store, they can also embed
compute directly next to their data. Serverless applications already
logically decompose applications into fine-grained units in order to
ease scaling; we view Shredder as the first step toward exploiting
that by recognizing that logically decoupling compute and storage
need not mandate physical decoupling.

Shredder aggressively eliminates data movement by bringing
functions as near as possible to the data they operate on. It elim-
inates movement across the network, between the network card
and storage functions, and between storage functions and data. By
attacking all layers of the storage server, Shredder achieves mil-
lions of tenant-provided functions per second over stored data with
remote access latencies of 50 µs.
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